Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Spaces

SAURABH MANRO

* School of Mathematics and Computer Applications, Thapar University, Patiala (Punjab)

sauravmanro@hotmail.com, sauravmanro@yahoo.com

Abstract: In this paper, we prove a common fixed theorem for four mappings under weakly compatible condition in intuitionistic fuzzy metric space.

Key words: Intuitionistic Fuzzy metric space, weakly compatible mappings, common fixed point theorem.

AMS (2010) Subject Classification: 47H10, 54H25

1. Introduction

Atanassove [4] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. In 2004, Park [7] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca et al.[1] using the idea of Intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm and continuous t-conorms as a generalization of fuzzy metric space due to Kramosil and Michalek [5]. In this paper, we prove a common fixed theorem for four mappings under weakly compatible condition in intuitionistic fuzzy metric space.

2. Preliminaries:

The concepts of triangular norms (t-norms) and triangular conorms (t-conorms) are known as the axiomatic skelton that we use are characterization fuzzy intersections
and union respectively. These concepts were originally introduced by Menger [6] in study of statistical metric spaces.

Definition 2.1. [9] A binary operation \(* : [0,1] \times [0,1] \rightarrow [0,1] \) is continuous \(t \)-norm if *

\(* \) satisfies the following conditions:

(i) \(* \) is commutative and associative;

(ii) \(* \) is continuous;

(iii) \(a \ast 1 = a \) for all \(a \in [0,1] \);

(iv) \(a \ast b \leq c \ast d \) whenever \(a \leq c \) and \(b \leq d \) for all \(a,b,c,d \in [0,1] \).

Definition 2.2. [9] A binary operation \(\diamond : [0,1] \times [0,1] \rightarrow [0,1] \) is continuous \(t \)-conorm if \(\diamond \) satisfies the following conditions:

(i) \(\diamond \) is commutative and associative;

(ii) \(\diamond \) is continuous;

(iii) \(a \diamond 0 = a \) for all \(a \in [0,1] \);

(iv) \(a \diamond b \leq c \diamond d \) whenever \(a \leq c \) and \(b \leq d \) for all \(a,b,c,d \in [0,1] \).

Alaca et al. [1] using the idea of Intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric space with the help of continuous \(t \)-norm and continuous \(t \)-conorms as a generalization of fuzzy metric space due to Kramosil and Michalek [5] as :

Definition 2.3. [1] A 5-tuple \((X,M,N,*,\diamond) \) is said to be an intuitionistic fuzzy metric space if \(X \) is an arbitrary set, \(* \) is a continuous \(t \)-norm, \(\diamond \) is a continuous \(t \)-conorm and \(M, N \) are fuzzy sets on \(X^2 \times [0, \infty) \) satisfying the following conditions:

(i) \(M(x, y, t) + N(x, y, t) \leq 1 \) for all \(x,y \in X \) and \(t > 0 \);

(ii) \(M(x, y, 0) = 0 \) for all \(x,y \in X \);

(iii) \(M(x, y, t) = 1 \) for all \(x,y \in X \) and \(t > 0 \) if and only if \(x = y \);

(iv) \(M(x, y, t) = M(y, x, t) \) for all \(x,y \in X \) and \(t > 0 \);

(v) \(M(x, y, t) \ast M(y, z, s) \leq M(x, z, t + s) \) for all \(x,y,z \in X \) and \(s,t > 0 \);

(vi) for all \(x,y \in X , M(x, y, .) : [0, \infty) \rightarrow [0, 1] \) is left continuous;

(vii) \(\lim_{t \rightarrow \infty} M(x, y, t) = 1 \) for all \(x,y \in X \) and \(t > 0 \).
(viii) \(N(x, y, 0) = 1 \) for all \(x, y \in X \);
(ix) \(N(x, y, t) = 0 \) for all \(x, y \in X \) and \(t > 0 \) if and only if \(x = y \);
(x) \(N(x, y, t) = N(y, x, t) \) for all \(x, y \in X \) and \(t > 0 \);
(xi) \(N(x, y, t) \bowtie N(y, z, s) \geq N(x, z, t + s) \) for all \(x, y, z \in X \) and \(s, t > 0 \);
(xii) for all \(x, y, \in X \), \(N(x, y, t) : [0, \infty) \rightarrow [0, 1] \) is right continuous;
(xiii) \(\lim_{t \to \infty} N(x, y, t) = 0 \) for all \(x, y \in X \).

Then \((M, N)\) is called an intuitionistic fuzzy metric space on \(X \). The functions \(M(x, y, t) \) and \(N(x, y, t) \) denote the degree of nearness and the degree of non-nearness between \(x \) and \(y \) w.r.t. \(t \) respectively.

Remark 2.1: Every fuzzy metric space \((X, M, *)\) is an intuitionistic fuzzy metric space of the form \((X, M, 1-M, *, \bowtie)\) such that \(t\)-norm \(*\) and \(t\)-conorm \(\bowtie\) are associated as \(x \bowtie y = 1 - ((1-x) * (1-y)) \) for all \(x, y \in X \).

Remark 2.2: In intuitionistic fuzzy metric space \((X, M, N, *, \bowtie)\), \(M(x, y, .) \) is non-decreasing and \(N(x, y, .) \) is non-increasing for all \(x, y \in X \).

Alaca et al. [1] introduced the following notions:

Definition 2.4: Let \((X, M, N, *, \bowtie)\) be an intuitionistic fuzzy metric space. Then
(a) a sequence \(\{x_n\} \) in \(X \) is said to be Cauchy sequence if, for all \(t > 0 \) and \(p > 0 \),
\[
\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0.
\]
(b) a sequence \(\{x_n\} \) in \(X \) is said to be convergent to a point \(x \in X \) if, for all \(t > 0 \),
\[
\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_n, x, t) = 0.
\]

Definition 2.5: [1] An intuitionistic fuzzy metric space \((X, M, N, *, \bowtie)\) is said to be complete if and only if every Cauchy sequence in \(X \) is convergent.

In 1996, Jungck [2] introduced the notion of weakly compatible maps as follows:

Definition 2.6. Let \((X, M, N, *, \bowtie)\) be an intuitionistic fuzzy metric space. \(f\) and \(g\) be self maps on \(X \). A point \(x \in X \) is called a coincidence point of \(f \) and \(g \) iff \(fx = gx \). In this case, \(w = fx = gx \) is called a point of coincidence of \(f \) and \(g \).
Maps \(f \) and \(g \) are said to be weakly compatible if they commute at coincidence point.
Definition 2.7[8]: A pair of self mappings \((f, g)\) of intuitionistic fuzzy metric space
\((X, M, N, *, \diamond)\) is said to be reciprocal continuous if
\[
\lim_{n \to \infty} f g x_n = f x, \lim_{n \to \infty} g f x_n = g x
\]
whenever, there exists a sequence \(\{x_n\}\) in \(X\) such that
\[
\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g x_n = x\text{ for some } x \text{ in } X.
\]

Alaca [1] proved the following results:

Lemma 2.1. Let \((X, M, N, *, \diamond)\) be an intuitionistic fuzzy metric space and for all \(x, y \in X, t > 0\) and if for a number \(k \in (0,1)\) such that
\[
M(x, y, kt) \geq M(x, y, t) \text{ and } N(x, y, kt) \leq N(x, y, t)
\]
Then \(x = y\).

Lemma 2.2: Let \(\{u_n\}\) is a sequence in an intuitionistic fuzzy metric space
\((X, M, N, *, \diamond)\). If there exists a constant \(k \in (0,1)\) such that
\[
M(u_n, u_{n+1}, kt) \geq M(u_{n-1}, u_n, t) \text{ and } N(u_n, u_{n+1}, kt) \leq N(u_{n-1}, u_n, t) \text{ for all } n = 1, 2, 3, \ldots
\]
Then \(\{u_n\}\) is a Cauchy sequence in \(X\).

3. Main Results

Theorem 3.1: Let \(A, B, P\) and \(Q\) be self mappings of a complete intuitionistic fuzzy metric space
\((X, M, N, *, \diamond)\) satisfying the following:

(3.1) for any \(x, y \in X\), and for all \(t > 0\) there exists \(k \in (0,1)\) such that,
\[
M(Px, Qy, kt) \geq \max \left\{ M(Ax, By, t), \frac{M(Px, Ax, t) + M(Qx, Bx, t)}{2} \right\}
\]
\[
N(Px, Qy, kt) \geq \min \left\{ N(Ax, By, t), \frac{N(Px, Ax, t) + N(Qx, Bx, t)}{2} \right\}
\]

(3.2) \(P(X) \subset B(X)\) and \(Q(X) \subset A(X)\)

(3.3) if one of \(P(X), B(X), Q(X), A(X)\) is complete subset of \(X\) then

(a) \(P\) and \(A\) have a coincidence point

(b) \(Q\) and \(B\) have a coincidence point.

If the pair \((P, A)\) and \((Q, B)\) are weakly compatible then \(A, B, P\) and \(Q\) have a unique common fixed point in \(X\).

Proof: As \(P(X) \subset B(X)\) and \(Q(X) \subset A(X)\), so we can define sequences \(\{x_n\}\) and
\(\{y_n\}\) in \(X\) such that
\[
y_{2n+1} = P x_{2n} = B x_{2n+1}, y_{2n+2} = Q x_{2n+1} = A x_{2n+2}.
\]
By (3.1),
\[M(Px_{2n}, Qx_{2n+1}, kt) \geq \max \left\{ M(Ax_{2n}, Bx_{2n+1}, t), \frac{M(Px_{2n}, Ax_{2n}, t) + M(Qx_{2n}, Bx_{2n}, t)}{2} \right\} \]
\[M(y_{2n+1}, y_{2n+2}, kt) \geq \max \left\{ M(y_{2n}, y_{2n+1}, t), \frac{M(y_{2n+1}, y_{2n}, t) + M(y_{2n+2}, y_{2n+1}, t)}{2} \right\} \]
\[M(y_{2n+1}, y_{2n+2}, kt) \geq \max \left\{ M(y_{2n}, y_{2n+1}, t), M(y_{2n+1}, y_{2n}, t) \right\} \]
\[M(y_{2n+1}, y_{2n+2}, kt) \geq M(y_{2n}, y_{2n+1}, t) \]

and
\[N(Px_{2n}, Qx_{2n+1}, kt) \leq \min \left\{ N(Ax_{2n}, Bx_{2n+1}, t), \frac{N(Px_{2n}, Ax_{2n}, t) + N(Qx_{2n}, Bx_{2n}, t)}{2} \right\} \]
\[N(y_{2n+1}, y_{2n+2}, kt) \leq \min \left\{ N(y_{2n}, y_{2n+1}, t), \frac{N(y_{2n+1}, y_{2n}, t) + N(y_{2n+2}, y_{2n+1}, t)}{2} \right\} \]
\[M(y_{2n+1}, y_{2n+2}, kt) \leq \min \left\{ N(y_{2n}, y_{2n+1}, t), N(y_{2n+1}, y_{2n}, t) \right\} \]
\[M(y_{2n+1}, y_{2n+2}, kt) \leq N(y_{2n}, y_{2n+1}, t) \]

Similarly, \(M(y_{2n+2}, y_{2n+3}, kt) \geq M(y_{2n+1}, y_{2n+2}, t) \) and
\[N(y_{2n+2}, y_{2n+3}, kt) \leq N(y_{2n+1}, y_{2n+2}, t) . \]

Therefore, in general,
\[M(y_{n}, y_{n+1}, kt) \geq M(y_{n-1}, y_{n}, t) \text{ and } N(y_{n}, y_{n+1}, kt) \leq N(y_{n-1}, y_{n}, t) . \] Hence, by Lemma 2.2, \(\{ y_n \} \) is Cauchy sequence in \(X \). By completeness of \(X \), \(\{ y_n \} \) converges to some point \(z \in X \).

Therefore, subsequence’s \(\{ y_{2n} \}, \{ y_{2n+1} \}, \{ y_{2n+2} \} \) converges to point \(z \in X \) i.e.
\[\lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} Px_{2n} = \lim_{n \to \infty} Qx_{2n+1} = \lim_{n \to \infty} Ax_{2n+2} = z . \]

Now, suppose \(A(X) \) is complete, therefore, let \(w \in A^{-1}z \) then \(Aw = z \).

Now, consider,
\[M(Pw, Qx_{2n+1}, kt) \geq \max \left\{ M(Aw, Bx_{2n+1}, t), \frac{M(Pw, Aw, t) + M(Qw, Bw, t)}{2} \right\} \]
\[M(Pw, y_{2n+2}, kt) \geq \max \left\{ M(z, y_{2n+1}, t), \frac{M(Pw, z, t) + M(Qw, Bw, t)}{2} \right\} \]

taking \(n \to \infty \), we have
\[M(P_w, z, k_t) \geq \max \left\{ M(z, z, t), \frac{M(P_w, z, t) + M(Q_w, B_w, t)}{2} \right\} \]
\[M(P_w, z, k_t) \geq \max \left\{ 1, \frac{M(P_w, z, t) + M(Q_w, B_w, t)}{2} \right\} \]
\[M(P_w, z, k_t) \geq 1 \]

and

\[N(P_w, Q_{x_{2n+1}}, k_t) \leq \min \left\{ N(A_w, B_{x_{2n+1}}, t), \frac{N(P_w, A_w, t) + N(Q_w, B_w, t)}{2} \right\} \]
\[N(P_w, y_{2n+2}, k_t) \leq \min \left\{ N(z, y_{2n+1}, t), \frac{N(P_w, z, t) + N(Q_w, B_w, t)}{2} \right\} \]

taking \(n \to \infty \), we have

\[N(P_w, z, k_t) \leq \min \left\{ N(z, z, t), \frac{N(P_w, z, t) + N(Q_w, B_w, t)}{2} \right\} \]
\[N(P_w, z, k_t) \leq \min \left\{ 0, \frac{N(P_w, z, t) + N(Q_w, B_w, t)}{2} \right\} \]
\[N(P_w, z, k_t) \leq 0 \]

This gives, \(P_w = z = A_w \). Therefore, \(w \) is coincidence point of \(P \) and \(A \).

Since, \(P(X) \subset B(X) \), therefore, \(z = P_w \in P(X) \subset B(X) \), this gives, \(z \in B(X) \), let \(v \in B^{-1}z \) i.e. \(Bv = z \). By (3.1)

\[M(y_{2n+1}, Q_{v}, k_t) \geq \max \left\{ M(y_{2n+1}, z, t), \frac{M(y_{2n+1}, y_{2n}, t) + M(y_{2n+1}, y_{2n}, t)}{2} \right\} \]

taking \(n \to \infty \),

\[M(z, Q_{v}, k_t) \geq \max \left\{ M(z, z, t), \frac{M(z, z, t) + M(z, z, t)}{2} \right\} \]
\[M(z, Q_{v}, k_t) \geq 1 \]

and

\[N(y_{2n+1}, Q_{v}, k_t) \leq \min \left\{ N(y_{2n}, z, t), \frac{N(y_{2n+1}, y_{2n}, t) + N(y_{2n+1}, y_{2n}, t)}{2} \right\} \]

taking \(n \to \infty \), we have

\[N(z, Q_{v}, k_t) \leq \min \left\{ N(z, z, t), \frac{N(z, z, t) + N(z, z, t)}{2} \right\} \]
\[N(z, Q_{v}, k_t) \leq 0 \]
This gives, \(Qv = z = Bv \). So, \(v \) is coincidence point of \(Q \) and \(B \). Since, the pair \((P, A) \) is weakly compatible, therefore, \(P \) and \(Q \) commute at coincidence point i.e. \(PAw = APw \), this gives, \(Pz = Az \) and as \((Q, B) \) is weakly compatible, therefore, \(QBv = BQv \) this gives, \(Qz = Bz \).

Now, we will show that \(Pz = z \). By (3.1), we have

\[
M(Pz, Qx_{2n+1}, t) \geq \max \left\{ M(Az, Bx_{2n+1}, t), \frac{M(Pz, Az, t) + M(Qz, Bz, t)}{2} \right\}
\]

and

\[
N(Pz, Qx_{2n+1}, t) \leq \min \left\{ N(Az, Bx_{2n+1}, t), \frac{N(Pz, Az, t) + N(Qz, Bz, t)}{2} \right\}
\]

taking \(n \to \infty \),

\[
M(Pz, z, t) \geq \max \{ M(Az, z, t), 1 \} \geq 1
\]

and

\[
N(Pz, z, t) \leq \min \{ N(Az, z, t), 0 \} \leq 0
\]

This gives, \(Pz = z = Az \).

Similarly, we prove that \(Qz = z \).

By (3.1),

\[
M(Px_{2n}, Qz, t) \geq \max \left\{ M(Ax_{2n}, Bz, t), \frac{M(Px_{2n}, Ax_{2n}, t) + M(Qx_{2n}, Bx_{2n}, t)}{2} \right\}
\]

and

\[
M(y_{2n+1}, Qz, t) \geq \max \left\{ M(y_{2n+1}, Bz, t), \frac{M(y_{2n+1}, y_{2n+1}, t) + M(y_{2n+1}, y_{2n+1}, t)}{2} \right\}
\]

taking \(n \to \infty \),

\[
M(z, Qz, t) \geq \max \left\{ M(z, z, t), \frac{M(z, z, t) + M(z, z, t)}{2} \right\}
\]

and

\[
M(z, Qz, t) \geq \max \{ M(z, Bz, t), 1 \} \geq 1
\]
\[N(Px_{2n}, Qz, kt) \leq \min \left\{ N(Ax_{2n}, Bz, t), \frac{N(Px_{2n}, Ax_{2n}, t) + N(Qx_{2n}, Bx_{2n}, t)}{2} \right\} \]
\[N(y_{2n+1}, Qz, kt) \leq \min \left\{ N(y_{2n}, Bz, t), \frac{N(y_{2n+1}, y_{2n+1}, t) + N(y_{2n}, y_{2n}, t)}{2} \right\} \]

taking \(n \to \infty \),
\[N(z, Qz, kt) \leq \min \left\{ N(z, Bz, t), \frac{N(z, z, t) + N(z, z, t)}{2} \right\} \]
\[N(z, Qz, kt) \leq \min \{ N(z, Bz, t), 0 \} \]
\[N(z, Qz, kt) \leq 0 \]

This gives, \(Qz = z = Bz \). Therefore, \(z \) is a common fixed point of \(P, A, Q \) and \(B \).

For Uniqueness, let \(w \) be another fixed point of \(P, A, Q \) and \(B \) then by (3.1), we have
\[M(Pz, Qw, kt) \geq \max \left\{ M(Az, Bw, t), \frac{M(Pz, Az, t) + M(Qz, Bz, t)}{2} \right\} \]
\[M(z, w, kt) \geq \max \left\{ M(z, w, t), \frac{M(z, z, t) + M(z, z, t)}{2} \right\} \]
\[M(z, w, kt) \geq 1 \]

and
\[N(Pz, Qw, kt) \leq \min \left\{ N(Az, Bw, t), \frac{N(Pz, Az, t) + N(Qz, Bz, t)}{2} \right\} \]
\[N(z, w, kt) \leq \min \left\{ N(z, w, t), \frac{N(z, z, t) + N(z, z, t)}{2} \right\} \]
\[N(z, w, kt) \leq 0 \]

this gives, \(z = w \). Hence, \(z \) is unique common fixed point of \(P, A, Q \) and \(B \).

By choosing \(P, A, Q \) and \(B \) suitably, one can derive corollaries involving two or more mappings. As a sample, we deduce the following natural result for a pair of self mappings by setting \(P = Q \) in Theorem 3.1:

Corollary 3.1: Let \(A, B \) and \(P \) be self mappings of a complete intuitionistic fuzzy metric space \((X, M, N, *, \emptyset) \) satisfying the following:

(3.4) for any \(x, y \in X \), and for all \(t > 0 \) there exists \(k \in (0,1) \) such that,
\[M(Px, Py, kt) \geq \max \left\{ M(Ax, By, t), \frac{M(Px, Ax, t) + M(Px, Bx, t)}{2} \right\} \]
\[N(Px, Py, kt) \leq \min \left\{ N(Ax, By, t), \frac{N(Px, Ax, t) + N(Px, Bx, t)}{2} \right\} \]
(3.5) \(P(X) \subset B(X) \) and \(P(X) \subset A(X) \)

(3.6) if one of \(P(X), B(X), A(X) \) is complete subset of \(X \) then
(a) \(P \) and \(A \) have a coincidence point
(b) \(P \) and \(B \) have a coincidence point.

If the pair \((P, A)\) and \((P, B)\) are weakly compatible then \(A, B \) and \(P \) have a unique common fixed point in \(X \).

By taking \(A = B = I \) (Identity map) in Theorem 3.1, we get

Corollary 3.2. : Let \(P \) and \(Q \) be self mappings of a complete intuitionistic fuzzy metric space \((X, M, N, *, \emptyset)\) satisfying the following:

(3.7) for any \(x, y \in X \), and for all \(t > 0 \) there exists \(k \in (0,1) \) such that,

\[
M(Px, Qy, kt) \geq \max \left\{ M(x, y, t), \frac{M(Px, x, t) + M(Qy, x, t)}{2} \right\} \\
N(Px, Qy, kt) \leq \min \left\{ N(x, y, t), \frac{N(Px, x, t) + N(Qy, x, t)}{2} \right\}
\]

(3.8) if one of \(P(X), Q(X) \) is complete subset of \(X \).

If the pair \((P, Q)\) is weakly compatible then \(P \) and \(Q \) have a unique common fixed point in \(X \).

References:

